The Sync Model:

A Parallel Execution Method for Logic Programming

Pey-yun Peggy Li
and
Alain J Martin

Computer Science Department
California Institute of Technology

5221:TR:86

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1986 2. REPORT TYPE 00-03-1986 to 00-03-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Sync Moddl: A Parallel Execution Method for Logic Programming £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 31
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Sync Model:

A Parallel Execution Method for Logic Programming

Pey-yun Peggy Li
and
Alain J. Martin
Computer Science
California Institute of Technology
Pasadena CA 91125

March 1986
5221:TR:86"

Abstract

The Sync Model, a parallel execution method for logic programming, is pro-
posed. The Sync Model is a multiple-solution data~driven model that realizes AND-
parallelism and OR-parallelism in a logic program assuming a message-passing mul-
tiprocessor system. AND parallelism is implemented by constructing a dynamic
data flow graph of the literals in the clause body with an ordering algorithm. OR
parallelism is achieved by adding special Synchronization signals to the stream of
partial solutions and synchronizing the multiple streams with a merge algorithm.
The ordering algorithm and the merge algorithm are described. The merge algo-
rithm is proved to be correct and therefore, the Sync Model is proved complete, i.e.,
the execution of a logic program under the Sync Model generates all the solutions.

The research described in this paper was sponsored by the Defense Advanced Re-
search Projects Adency, ARPA Order No. 3771, and monitored by the Office of
Naval Research under contract number N00014-79-C-0597.

1 Introduction

One way to improve the efficiency in the execution of a logic program is to exploit the potential
parallelism, namely AND parallelism and OR parallelism, inherent to the program. In this paper,
a method — called the “Sync Model” — is proposed for the parallel execution of logic programs on
a message-passing multiprocessor system. The method realized both AND-parallelism and OR-
parallelism. OR parallelism — the parallel execution of all clauses that are unifiable with the goal
— is easier to realize than AND parallelism because the executions of OR clauses are independent
of each other. On a message-passing system, the synchronization of the multiple solutions gener-
ated by different processes is the major problem in the implementation of OR parallelism. AND
parallelism—the parallel execution of AND literals in a clause body—may result in binding conflicts

for a variable shared by several literals.

Constructing a data flow graph is the most common approach for AND parallelism. By allowing
exactly one producer for each shared variable, binding conflicts can be eliminated. One problem in
the data flow approach is that the data flow graph is changed dynamically according té the binding
values transmitted within the graph. When a variable is bound to a partially instantiated term
containing another variable, binding conflicts may occur. Therefore, the data flow graph needs to be
modified to enforce the “one producer per variable” rule to the new variable. In most computation
models for concurrent logic programming languages, the data flow graph of literals in a clause body
is constructed by the programmer through variable annotations. Alternatively, the data flow graph
can be constructed automatically by the system; either dynamically such as in Conery’s AND/OR
process model [2] or statically such as in Chang and DeGroot’s static data dependency analysis
[1,3]. In the Sync Model presented in this paper, the data flow graph is dynamically constructed
after each unification and is modified by adding “dynamic links” when partially instantiated terms
are detected in a binding by using a run-time type checking algorithm similar to [3]. The algorithm
is more efficient than [2] and the graph constructed by the algorithm reveals more parallelism than

[1]. Optional variable annotations from the programmer may help constructing the data flow graph.

To implement both AND parallelism and OR parallelism in one model is a difficult task. The
synchronization of partié.l solution streams in AND processes has never been solved satisfactorily.
Either AND parallelism is suppressed by connecting sibling AND processes into a linear chain 7,
9] or OR parallelism is reduced by using backtracking [2]. In the Sync Model, a synchronization

mechanism is proposed to synchronize the multiple partial solutions so that all the solutions of a

2

given problem will be produced without explicit request. Therefore, the Sync Model is a multiple

solution data driven model.

The language we choose for the Sync Model is an extended logic programming language, called
CLP, with optional variable annotations and a commit operator. Variable annotations, the input
annotation (“?”) and the output annotation (1), are used in the clause body to specify the
producer and the consumer of a shared variable. The commit operator “—” is used to serialize
the executions of two parts of the clause body. CLP is not designed as a concurrent language.
The variable annotations and the commit operator are used to achieve more efficient execution
under the Sync Model, but they are.not required and do not change the semantics of the language.
Therefore, although the Sync Model is designed for CLP, any Horn-clause logic program can be

executed under the Sync Model.

The target machine for the Sync Model is a message-passing multiprocessor system with the
processors interconnected into an augmented binary tree, called the Sneptree [8,5]. Since the map-
ping of an unbounded binary tree onto the Sneptree is done automatically and the mapping of a

complete binary tree onto the Sneptree is always optimal, the Sneptree is an ideal architecture for

the Sync Model.

One of the major distinction between the Sync Model and the computation models for other
concurrent logic programming languages, such as Concurrent Prolog [13], is that in our Model, a
process is suspended when waiting for an input from an input channel, while in Concurrent Prolog,
a process is suspended when it attempts to unify a read-only variable with a non-variable term. In
our approach, all the input variables are bounded before the unification so that the unification rule
is not changed. In Concurrent Prolog and other similar approaches [11,12], the unification rules
are modified to handle variable annotations. As a consequence, the variable annotations may be
propagated to other non-annotated variables and a read-only variable may get instantiated in a

unification.

The rest of the paper is organized as follows: In the next section, the language and the Sync
Model are described. We also address, and propose solutions to, the main problem of constructing
the data flow graph, i.e., binding to a partially instantiated term causes the data flow graph to
be changed, as well as the synchronization problem of multiple partial solutions in the data flow
graph. In sections 4 and 5, the two main algorithms of the Sync Model, i.e., the ordering algorithm

and the merge algorithm, are presented. We also prove the correctness and completeness of the

merge algorithm and the Sync Model.

2 The Language and the Sync Model

2.1 The Language

The language, called CLP, (which stands for Concurrent Logic Programming), is an extended

logic programming language with variable annotations and guarded clauses.

A CLP program is a finite set of guarded clauses of the form
A:-Gy,Gs,...,Gp — By, Bg,...,By,.

where A is called the head of the clause, (Gy,...,Gp) the guard of the clause, and (B1,...,Bn)
the body.

The guard of a clause may be empty. When the guard is empty, the commit operator is
neglected. When both the guard and the body are empty, the clause is called a unit clause. Both
the guard and the body are a set of literals. The two sets are separated by a commit operator, “—” .
Declaratively, the commit operator reads like a conjunction: A is true if Gy,..., and Gm, as well
as By, ..., and By are true. Operationally, the commit operator forces the sequential execution of
the guard and the body: a goal Al which is unifiable with A can be reduced to By, ..., and By if

and only if the guard literals Gy ...Gy, are evaluated to true.

A variable can be either a simple variable, or an output variable annotated by a postfix operator
“P”, or an tnput variable annotated by a postfix operator “?”. Variable annotations are not allowed in
the clause head. This restriction prohibits annotated variables from appearing in the unification.
Therefore, Robinson’s unification algorithm can be used directly without any modification. A
variable is “shared” when it appears in more than one literal in the body. For a shared variable
in the body, at most one literal containing that variable is allowed to have it annotated as output.
Such a literal is called the producer of that variable, and the literals that contain input variables
are called the consumers of those variables. The guard may not have any shared variable with the
clause head or the body after unification — a guard evaluates to true or false without generating
any outputs. But share variables between guard literals are allowed. Such a syntactic restriction
separates the guard and the body into two independent parts which simplifies the implementation

of our Model. In each CLP program, there is a goal with the form “— G”.

4

Unlike other parallel logic programming languages, the extra language constructs in CLP, the
variable annotations and the commit operator, do not affect the semantics of the language. They
can be used by the programmer optionally to achieve more efficient execution under the Sync
Model. In order to prevent the semantics from being changed by the commit operator, when the
restriction on the variables of the guard is violated, the system simply ignores the commit operator

and executes the guard and the body in parallel.

The execution of a logic program is to construct and search the AND /OR tree of this program.
For a given goal and a program, there exists a unique AND/OR tree which represents the complete
search space of the goal. The Sync Model constructs a tree of processes corresponding to. the

AND/OR tree of the program and search the tree in breadth-first manner.

2.2 The Sync Model

The computation model of CLP, called the Sync Model, is a process model. Two types of
processes are created and terminated dynamically during the computation. An AND process corre-
sponds to a goal, and an OR process corresponds to a clause that is used to reduce a specific goal. A
tree of interleaved AND and OR processes, called the process tree, is constructed corresponding to
the AND/OR tree of the program. The initial goal is assigned to an AND process, which becomes
the root of the process tree. For each clause whose head is unifiable with the goal of an AND pro-
cess, one OR process is spawned to carry out the unification and the reduction of this OR clause.
After unification succeeds in an OR process, the reduction of the goal is carried out by spawning
one AND process for each literal in the body and then reducing the goals in the AND processes
concurrently. If the clause in an OR process has a nonempty guard, a set of AND processes is
spawned for each goal in the guard first. When all the AND processes for the guard successfully
terminate, the OR process can spawn processes for the goals in the body and proceed. When any
of the guard literals fails, the OR process fails. Therefore, full OR Parallelism is implemented in
this model in the way of parallel unification of all the unifiable clauses, parallel evaluation of all

the guard literals and parallel execution of all the OR branches that succeed in unification.

A leaf node of the process tree is either an OR process which fails to unify, or an OR process
corresponding to a unit clause, or an AND process corresponding to a built-in predicate. An
OR process containing a unit clause returns the variable bindings to its father AND process and
terminates if it succeeds in unification. An AND process corresponding to a built-in predicate

evaluates the predicate directly and sends the variable bindings to proper destination processes.

5

A non-leaf AND process succeeds when at least one of its OR descendants succeeds. It receives
the bindings of its output variables from the descendants and sends them out to its father and
all the sibling consumer processes of its output variables. A non-leaf OR process succeeds when
all its descendant AND processes successfully terminate. It merges the results received from its

descendants and then sends them to its father.

AND parallelism is implemented by dynamically constructing the data flow graph of the literals
in the clause body. To avoid binding conflict in the parallel execution of sibling AND processes with
shared variables, only one AND process is allowed to be the producer of a shared variable. All the
other AND processes that also contain that shared variable are considered the consumers of that
variable. A consumer process will suspend its computation until the values of its input variables
have been received from their producers. A data flow graph of all the literals in the clause body,
(so-called AND literals), is constructed such that a node represents an AND literal and an edge is
directed from the producer of a shared variable to a consumer of that variable. As we shall see,
the ordering algorithm will guarantee that the data flow graph is acyclic so as to avoid deadlock.
Communication channels are added into the process tree to model the edges of the data flow graph.
With the communication channels between sibling AND processes, the process tree is no longer a

tree. We prove later that our process tree generates the same results as the corresponding AND /OR

tree.

The input and output annotations in CLP are added to the program optionally by the pro-
grammer to help construct the data flow graph so that more efficient computation can be achieved.
Without explicit variable annotations, the “left to right” order of the AND literals is used for se-
lecting the producer of a variable. The explicit variable annotation should fulfill the two restrictions

on the data flow graph: one producer per variable and acyclicity of the data flow graph. These can

easily be checked syntactically.

Parallel execution of different OR processes may produce multiple solutions for the output
variables of their father AND process. Those multiple solutions will be transmitted along the
communication channels. Hence, we need some mechanism to synchronize the multiple inputs of a
given AND process originating from different sources. In our computation model, any process that
generates or collects a solution transmits the solution without requiring a request. Hence, our model
can be viewed as a multiple-solution data-driven model. With this synchronization mechanism, we

are able to incorporate both AND parallelism and OR parallelism without any form of backtracking.

6

2.2.1 Synchronization of Multiple Inputs of a Process

Multiple solutions for a variable may be transmitted through the communication channels in
the data flow graph. If one AND process, say p, consumes two inputs from two different sources,
we shall merge the two input streams to form all the input combinations of process p. Usually, the
input combination of process p is the Cartesian Product of the two input streams. There is one
exception — when the two input streams originate in the same process, the input combination of
p is a set of Cartesian Products over certain portions of the two input streams that derive from
the same output of the common ancestor. In the sequel, we call a set of paths that have the same
starting process and the same ending process a multiple path between these two processes. In Figure
1, there are two paths (a,b,d) and (a,c,d) between process a and process d. If process a binds
(X,Y) to (z1,y1) and (z3,ys), process b binds T to ¢; and t; with input z;, t3 with input zg, and
process ¢ binds S to sy and sp with input y;, s3 and s4 with input ys, then the input combination
for process d should be (t1,s1), (t1,82), (t2, 51), (t2, 82), (t3, 83), (£3, 54) instead of the full Cartesian
Product of the two input streams. Observe that the first four input pairs of process d are derived
from the input (z1,y;) and the remaining two input pairs are derived from (z2,y2). Because the
two inputs of process d originate in the same process a, we shall form the Cartesian Product over
the portions of the input streams which are generated by the same output pair of process qa, e.g.,
(t1,t2) and (s1,s3), or (t3) and (s3,54). In order to derive the correct input combination, we mark
process a as a Sync generator and the outputs generated by process a are separated by a special
Sync signal. The Sync signals are then propagated through processes b and ¢, and reach process d
in both inputs. Finally process d detects the same Sync signals in both inputs and then forms the
Cartesian Product over the input portions which are enclosed by the corresponding pair of Sync

signals.

After the data flow graph has been constructed, we determine all the multiple paths in the
graph and mark the starting nodes of those paths as Sync generators. Different Sync generators
generate different Sync signals. A process that receives two or more inputs from different channels
merges the input streams according to the Sync signals carried in each input stream. The Sync
signals may be duplicated during the merge process when they are nested in other Syncs. In the
above example, process a is a Sync generator, hence the output streams generated by process a
should be (83,21, 54, 22, END) and (Sa,y1,Sa,y2, END) respectively, where S, represents a Sync

signal generated by process a and “END” represents a special signal indicating the end of the

7

stream. Likewise, the 6utput streams of process b and process ¢ should be (Sg, 1,13, S4,t3, END)
and (Sq, s1, 82, Sa, 53, 54, END) respectively. Therefore, the input combination of process d becomes
(Sa, (t1,51), (t1, 82), (t2,81), (t2, 82), Sa, (t3, 83), (¢3, 54), END). Once a Sync signal is generated, it is
propagated to (may be duplicated in) the other sibling AND processes through the communication
channels in the data flow graph. The Sync signals will be removed at the father OR process before
the output streams are sent out to higher level AND processes. Therefore, the Sync signals are

local to the OR process and its AND descendants.

[ta] | [:3]

Figure 1. An Example with Multiple Path

2.2.2 Partially Instantiated Terms

When the producer of a variable binds the variable to a partially instantiated term, i.e., a
term containing another variable, binding conflict may occur if that variable has more than one
consumer. We solve this problem by adding so-called “dynamic links” into the graph to enforce

the “one producer per variable” rule to the newly generated variable.

The data flow graph needs to be changed in two cases: (1) when a variable is bound to a
partially instantiated term and this variable has more than one consumer, and (2) when two or
more variables are bound to some terms containing the same variable. In both cases, one of the
consumers of these variables is selected as the producer of the new variable and the dynamic links
are directed from the new producer to all the rest of the consumers. The information about dynamic
links is not provided during the construction of the data flow graph. Instead, such information is
generated and sent to the selected producer of the new variable when an AND process binds some
output variables to partially instantiated terms. A simple test on the binding values of all the

output variables to test the above two cases is sufficient to determine whether dynamic links are

8

needed and how they are directed. Such a test is similar to DeGroot’s type checking [3], except
that we do the same check in every AND process without consulting the complex graph expression

proposed by DeGroot.

The creation of dynamic links may introduce new Sync generators. The only process which
may become a Sync generator is the producer of the new variable, which becomes a Sync generator
when the node that binds a variable to the partially instantiated term is also a Sync generator.
Those Sync Generators are identified and marked after the dynamic links are created. For more

detail about dynamic links, see [6].

2.2.3 The AND process and the OR process

We briefly summarize the major tasks performed by an AND or an OR process. For full detail

of the Sync Model, see [6].

AND process

Call a merge algorithm to merge the input streams and bind the merged inputs to the input

variables of the goal one at a time if the goal contains input variables.

Perform type checking on the merged input and create dynamic links if necessary.

Spawn OR processes and collect the results for each of the goals with bound input variables.

Generate Sync signals to separate each of its outputs if it is a Sync generator.

OR process

Unify the goal with a given clause.

Return the bindings derived in the unification followed by an “END” to its father if the given

clause is a unit clause.

Construct the data flow graph of the guard literals and spawn AND processes for the guard if

the given clause has a nonempty guard.

Construct the data flow graph of the literals in the body and spawn AND processes for the

body if all the AND processes for the guard return true or the given clause has an empty guard.

— Merge the partial solutions received from its descendants, remove the Sync signals and send

the results to its father.

3 The Ordering Algorithm

By imposing that each shared variable has exactly one producer, we eliminate binding conflicts.
To construct the data flow graph of AND literals, an Ordering Algorithm is applied in each OR
process. The data flow graph is represented in two ways: by variable annotations in the literals

and by a channel table containing the producer and consumer information of shared variables.

The Ordering Algorithm is performed in an OR process to construct the data flow graph of the
AND literals after unification succeeds and the variables in the clause body are replaced by their
binding values if they are instantiated after the unification. The Ordering Algorithm consists three
major steps: (1) the construction of the data flow graph, (2) the refinement of the graph, and (3)
the marking of the Sync generators. In the first step, variable annotations are used to determine the
modes (input or output) of the uninstantiated variables in the AND literals. Initially, all the AND
literals in the clause body are stored in an Undecided Process List (UPL). The algorithm determines
the producer and the consumers of all the variables in the AND literals, adds annotations to all the
variables, and then moves the literals to a Fired Process List (FPL). A Channel Table (CT) is also
constructed to store the producer and consumers information of all the variables. Moreover, the
literals are renumbered during this step so that their numerical order is consistent with their partial
order in the data flow graph. In the second step, the data flow graph is further refined by creating
“selective channels” and “True/False channels” for the literals that generate no output variables.
As we shall see, this step is necessary to exploit the parallelism implied by the program so that a
more efficient data flow graph can be constructed. In the third step, the algorithm searches for all
the multiple paths in the data flow graph. If a multiple path is found, the algorithm marks the
starting node of the multiple path as a SYNC generator. The complete algorithm will be elaborated

in the remainder of this section.

Data Structure:
The following data structures are used in the algorithm:
e UPL - a list of AND literal and identifier pairs that are not fired yett.
e FPL — a list of fired AND literals with all their variable arguments annotated. Each entry
in the list contains an AND literal with annotated arguments, a Sync attribute, and a

number attached to the literal to enforce a total order.

T “Aliteral is fired” means that a literal is moved from UPL to FPL and all its variable arguments

are annotated.

10

e CT - a table of triples (Var,Producer,Consumers-list), to record the producer and con-

sumers of a variable.

e S - a stack containing distinct nodes belonging to the paths starting from one specific node.

Besides, the AND literals are initially identified 1 to N from left to right in the clause body

with the goal of the current OR process numbered 0.

Algorithm:

Step 0: Initialization
CT:= 0; FPL:= 0;
UPL:= list of all literals.

Step 1: Construction of the data flow graph:
In this step, the producer and the consumers of each shared variable are chosen and

the variables in each literal are annotated.

A literal can be fired iff (1) all its input variables have a producer and the producers are already
fired, and (2) the total number of output variables, input variables, and constant arguments
of this literal is at least one. The first condition assures that a producer of a shared variable
is always fired before the consumers of this variable. The second condition implies that the
threshold [14] of each literal is one. If none of the unfired literals satisfies the above conditions,
the leftmost unfired literal in the clause body is chosen to be fired next.
a. forall v;: v; € pninstantiated variables in the goal
add (v, [], [0]) into CT;

b. forall I: I €UPL
do forall v;: v; € variable arguments in {
do ifv; & CT — if v; is output annotated — add (v;,!,][]) into CT
| otherwise — add {v;,[],[]) into CT
fi
| v; € CT — if v; is output annotated — CT.v;.producer = [
| otherwise — skip

fi

11

c. tndezx :=1;
while UPL# 0
do fired :=false;
forall I: | eUPL
do forall v;: v; is unannotated A CT.v;.producer #[|
mark v; as an input variable in UPL;
b :=true;
forall v;: v; is an input variable in [
do z:=CT.v;.producer;
b -b/\(a:;é[]/\m>N)
od {b=Vv; :v; is an input variable in I: v; has a producer and the producer is fired}
if bA(#constant arguments+#output variables++#input variables>0)—
{beginning of firing process}
newtd := index + N;
forall v;: v; € variableargumentsinl
do if v; is input — add newid into CT.v;.consumer
|v; is unannotatedVv; is output — CT.v;.producer := newid;
mark v; as an output variable in UPL
|otherwise — skip
fi;
od
UPL:=UPL-1I;
FPL[indez] := I;
tndez := indez + 1;
fired :=true
{end of firing process}
|otherwise— skip
fi

od;
d. if ~fired — | :=UPL[1];
do “firing process”

|otherwise—skip

fi

od;
e. forall v;: v; € CT
do if CT.v;.consumer =[] » CT:=CT—v;
|otherwise — skip
fi

od .

12

Step 2: Refinement of the Graph

If some literals have no output variables in the data flow graph constructed in step 1, extra
links need to be added into the graph to make sure the true/false results of this kind of literals
will be transmitted to the goal.

Let’s assume p is such a literal and X is an input variable of p. In this step, we first attempt to
add so-called selective channels from p to the rest of the consumer literals of X. These channels
transmit only the values of X that make p true. Meanwhile, the links between the producer
of X to the consumers of X except p are removed from the graph.. If no selective channel is
constructed for p, a True/False channel is added from p to the goal to transmit the results of

p.

The insertion of selective channels should not cause cycles in the graph. To assure the acyclicity
of the graph, we only add the selective channels such that the receiver of the channel is fired
after all the antecedents of the sender. The antecedents of a literal are the producers of all the
input variables of the literal.

forall I: I € FPL A I has no output variables
do new := false;
prod = {;
forall v;: v; is an input variable of [
add CT.v;.producer into prod;
forall v;: v; is an input variable of [
do ¢:=CT.v;.consumer;
cl :={c;lc; € ¢ : (Vpj € prod : ¢; > pj) Ay # 1}
iflecAcl # 0 — add (v;,1,cl) into CT;
CT.v;.consumer := ¢ — ¢l;
new :=frue
|otherwise — skip
if
od ;
if -new — add (t/f,1,[0]) into CT
|otherwise — skip
fi

Step 3: Marking of the Sync generators (Detection of the multiple paths):

A stack is built for each literal ! in FPL that has more than one output channel. The de-

scendants of [are pushed into the stack if they are not yet in the stack. This pushing process

13

continues until either all the descendants of [are in the stack or a descendant to be added
to the stack is found to be already in the stack. In the second case, [is marked as a SYNC
generator.

forall I : | €EFPL A #consumers(l) > 1
do pt:=1; 8 :=[l];
while Spt] # 0
do p:= S[pt];
forall v; : v; is a variable in p
do if CT.c;.producer = p —
forall ¢; : ¢; € CT.v;.consumer
do if ¢; € S — push ¢; into S
le; € § — set Sync attribute of p to true in FPL; stop

fi
od
|otherwise — skip
g;
od
pt=pt+1

od

The above algorithm always generates an acyclic data flow graph with one producer per shared

variable. The ordering algorithm is correct for the following reasons:

1.

The ordering algorithm selects exactly one producer for each variable.

The data flow graph generated in Step 1 is acyclic because a literal can be fired only when
all the producers of its input variables have been fired (b is true in Step 1.c). Therefore, the
producer of a given variable is always fired before all the consumers of that variable. The firing
order of the literals implies their partial order in the data flow graph, thus, the graph has no

cycles.

The refined data flow graph generated in Step 2 is acyclic because the redirected links do not

create cycles in the refined graph. If a cycle were found in the refined graph, it would contain

- at least one redirected link, say (I;,{;). Let the cycle be (Iis15,. .., 1g, 1;), then Iy, is the producer

of one input variable of /; and I; > I because a path exists from l; to ly. In Step 2, such a
link (I;,1;) is never generated because [j is excluded from cl. Therefore, the refined graph is

also acyclic.

An Example

14

Figure 2 is a query:“Is there a student such that a professor teaches him two different
courses in the same room?” for a data base of Students who take Courses (student(S,C)),
Professors who teach Courses (professor(P,C)), and Courses held on certain week Days and Rooms
(course(C, D, R)), [10]. To save space, the database of relations student, course, and professor are

omitted here.

query(8,P) : - student(S,C1), (1)
course(C1,D1,R), (2)
professor(P,C1), (3)
student (S,C2), €Y
C1+#£C2, (5)
course(C2,D2,R), (6)
professor(P,C2). n

Figure 2. A Query for a database of students

To answer the query “: — query(S, P).”, we construct a process tree and map the initial goal
to the root. In the OR process that is spawned by the root, we shall apply the ordering algorithm
against the seven AND literals in Figure 2.

Since none of the variables are annotated in the definition of query, we select the producers
of the shared variables by imposing the left-to-right order of the literals and as a consequence, the

data flow graph constructed by Step 1 is shown in Figure 3.

Sync Generator

Figure 8. The Data flow graph of query(S, P)

In Step 1, the literals are renumbered so that their numerical order implies their partial ordering

in the graph. The new identifiers of the literals are enclosed in the parentheses next to each node

15

in Figure 3. Notice that literals (5), (6), and (7) don’t generate any outputs. After adding selective
channels to these literals by Step 2, the refined data flow graph is shown in Figure 4. Comparing
with the previous graph, we found that the variable C2 is transmitted sequentially from literal (4)
to (5), (6) and (7) in the refined graph instead of transmitted in parallel in the original graph. At
first glance, the refined graph seems to have less parallelism than the original one. In fact, the
latter one is more efficient than the former one because literal (6) or (7) only receives the values
of C2 such that literal (5) or (6) is proved true. Therefore, the values of C2 generated by (4) will
first be filtered by (5), then sent to (6) and so forth. Unnecessary computations are avoided in
(6) and (7) because invalid values of C2 won’t be received by them. Also notice that no selective
channels are constructed for C1 at literal (5) because the consumers of C1, (2) and (3), are both
fired before the producer of C2, i.e., (4). To assure the acyclicity of the graph, the channels for C1

remain unchanged.

In Step 3, a stack is built up for literal (1). A multiple path is found when (5) is going to be
pushed into the stack twice. Therefore, (1) is marked as a Sync generator. No more stack is needed

because all the other literals have exactly one descendant each.

Sync Generator

(8)
cl 0 Ci
1 S

=]

(%4

S
ho

Figure {. The Refined Data flow graph of query(S, P)

The average complexity of the ordering algorithm is O(nlgn) with n AND literals. In most

cases, the AND literals in a clause body are almost-ordered, therefore, a linear complexity can be

16

achieved. For detail analysis of the complexity of the ordering algorithm, please see 6].

4 The Merge Algorithm

In the Sync Model, a process has to handle multiple input streams from different sources.
For example, an OR process has to merge all the partial solutions from its AND descendants to
form the solutions of this OR process, and an AND process needs to merge the input streams
from other sibling AND processes to form input combinations to itself. It is particularly true for
a nondeterministic program, in which multiple partial solutions may be generated, transmitted
and validated by different processes. A merge algorithm that synchronizes the execution of all the

cooperating processes is the crucial part of our Sync Model.

The merge algorithm in an AND process is basically the same as the one in an OR process.
The only difference is that the input stream of the latter one may contain True/False values instead

of variable bindings. In the following, the merge algorithm refers to the one in an AND process.

The merge algorithm operates only when there exist two or more input variables in a process.
An input stream consists of SYNC signals, variable bindings, and an END signal at the end. A
variable binding is a pair consisting of a variable name and its binding value. The SYNC signal
carries the process identifier that identifies the generator of the Sync signal. SYNC signals are
nested when the receiving node belongs to two or more different multiple paths. In essence, the
merge algorithm forms a Cartesian Product over the input streams to form all the possible input
combinations. When SYNC signals appear, the algorithm forms Cartesian Product over part of the
input streams separated by pairs of identical SYNC signals. In other words, only the input elements
in between the corresponding pair of SYNC signals can be combined and the input streams are

thus synchronized by the SYNC signals.

In the rest of this section, the base-case algorithm (i.e., no input stream contains SYNC signals)
is described in the next subsection. The Cartesian Product implemented as nested loops is inefficient
because the process may keep waiting for the inputs from a slow channel. A more efficient algorithm
is given in Figure 5. This algorithm reduces the waiting time by forming the Cartesian Product over
the available portions of input streams while the rest of the inputs are not there yet. The general
algorithm with input streams containing SYNC signals is presented in Section 4.2. Figure 6 is the
general algorithm for two streams. The general algorithm is a recursive algorithm which recursively

peels off SYNC signals in two streams and finally forms the Cartesian Product over the data inputs

17

enclosed by the innermost SYNC signal pair with the base-case algorithm. The algorithm for n
streams can be derived by generalizing the two-stream algorithm. In the last section, a correctness

proof for the n-input general merge algorithm is presented.

Throughout the algorithms, bufl[i, j] is used to represent the j-th input in the i-th input buffer,
where 1 < ¢ < n and n is the total number of input buffers. Each buffer is assumed to have
enough capacity to store the whole input stream. The indez[i] points to the position which is
currently being merged and avail[i] points to the top of the available portion of buffer i. Procedure
put(entry) adds a new element entry into the output queue, where entry can be a SYNC signal,

an array of n input bindings or an “END” signal.
4.1 Base-case Algorithm

Since the merge algorithm is operating concurrently with the receiving of inputs in each input
buffer, the simple iterative loop implementation may be inefficient due to waiting for the inputs

from a slow channel. A more efficient implementation is shown in Figure 5.

This algorithm forms the CP (abbreviation for Cartesian Product) over the available portions
of the n input streams repeatedly. Whenever an input buffer receives new inputs, Procedure cp is
called repeatedly to form the CP over the newly received inputs and the available portions of the
other input buffers. Then aevail[j] is advanced to the location of the newest available input. The

algorithm repeats the above operations for each input buffer until the new input in all the input

buffers is “END”.

{ Global Variables}

integer n; { number of input buffers}

integer array index[1:n], availlil:nl; { pointers}

input buffer buf[i:n,1:m]; { n input buffers with length m which are large enough to contain
the whole input streams}

buffer entry[1:nl; { a buffer to contain the next output}

{ Cartesian Product of the available portions of the n input buffers ezcept the i-th buffer
which is fized to an element e}
procedure cp(e,i);
begin
entry[i] :=e;
cpi(i,1)
end.

{ Cartesian Product over the available portions of buffk] to buffn] ezcept buffif}
procedure cpl(i,k);
begin

18

[k>n — put(entry)
| k=i — cp1(i,k+1)
| otherwise — 1:=1;
*[1<availl[k] — entry[k]:=buf[k,1];

cpl(i,k+1);
1:=1+1
1
]
end.
{ Main Program }
begin
i:=1;
*[i<n — index[i]:=1; availlil:=0; i:=i+1 1;
i:=1;

*[Jk: 1<k<n: buf[k,index[k]]#‘END’ —
*[i<n — *[—empty(buf[i,index[il])Abufli,index[i]]#‘END’ —
cp(bufli,index[i]],i);
index[i] :=index[i]+1

1;
avail[i] :=index[i]-1;
i:=i+1

end.

Figure 5. Base-case Algorithm

4.2 General Algorithm

If SYNC signals appear in at least one input stream, the general merge algorithm applies.
We first present the general algorithm for two input streams and later show how to generalize the

algorithm to n input streams.

In the ordering algorithm, the literals have been renumbered so that their numerical order is
compatible with their partial order in the data flow graph. The linear ordering of the Sync signals
in an input stream is always assured by the merge operation which performs an n-way merge on n

input streams.

The general algorithm consists of two principal operations: merge on the same Sync signals
and merge on different Sync signals. First, let two input streams contain the same Syncs, say
S, and the two input streams are A =(S, A1, S, As,...,S,An,END) and B =(S, By, S, Bs,...,S,

Bp,END), then the merge result is a sequence of CP’s over the corresponding portions of the two

input sequences which are separated by a pair of consecutive S’, i.e.,

AX B =(S,4;1 X B1,S,43 X By,...,S, Ay X B,,END) (1)

19

where A; stands for a sequence of data inputs, so as Bj for 1 < j < n, and A; X B; stands for the
CP of A; and Bj;.

The second principal operation handles the merge of two sequences with different Syncs. Let
two input streams be A = (S1,A4;,51,A4z,...,51,A,,END) and B = (S2,B1,52,B,,...,52,
B, END), and let S1<S2 so that S1 becomes the outer Sync in the merge result. The linear
ordering of the Sync signals in a merged stream guarantees that the common Syncs appearing in
two input streams are in the same order, therefore, the merge algorithm functions correctly. The
merge result can be computed as follows:

Ax B=(S1,A; x B,S1,A3 x B,...,S81,A, x B,END)
= (51,82, A; X By,82,A; X Bs,...,S82, A1 X By,

S51,82,A9 X B1,S52,...,As X By,)

$1,82,...... ,82, Ap X By, END)
The merge result is actually the CP of all the data inputs of the two streams when the two input
streams contain different Syncs. In order to maintain the synchronization information, we first do
the CP’s over the whole input stream B and a portion of stream A, i.e. A; for all ¢ and separate
the CP’s by S1. In each A; x B, again we do a set of CP’s of 4; x B; for all j and separate them
by 82. The CP “A; x B;” contains no Sync signals, hence the base-case algorithm can be applied.
In the result, the number of Sync signals S1 is preserved, i.e., n, and the number of Sync signal S2

is increased to n X m because S2 is nested inside S1.

The general algorithm for two input streams is recursively defined on the two principal oper-
ations. The Sync sequences of the input streams are linearly ordered, i.e., a Sync signal is larger
than all the Syncs which are outer to it and smaller than all the Syncs inner to it. In each re-
cursion, the outermost Sync signals of the two input streams are checked. If they are the same,
the first principal operation is called. If they are different, the second principal operation is called.
The merge algorithm is called recursively to compute each A; X B; in (1) or each 4; X B in (2).
When the merge algorithm is called to merge two input streams without any Sync signals, the
base-case algorithm is applied to get the CP. The merge result preserves the linear ordering of
the Sync sequence. Figure 6 presents the major procedures of the merge algorithm: merge, and
scanto. Procedure merge merges the input streams in bufl and buf2, and puts the result in an
output queue. Boolean function sync checks whether the given argument is a Sync signal or not.

Procedure merge has a guarded command with four alternatives: (1) neither of the inputs contains

20

Sync signals: cp is called to derive the Cartesian Product, (2) either buf1 contains Sync signals and
buf2 does not, or both inputs have Sync signals and the outermost Sync of buf1 is smaller than
that of buf2: the second principal operation applies, (3) same condition as (2) with buf1 and buf2
switched: the second principal operation also applies with A and B switched, and (4) both inputs
contain Sync signals and the outermost Syncs of the two inputs are the same: the first principal
operation applies. Procedure scanto divides the input buffer into two parts by the first occurrence
of some specific SYNC signal S. Procedure cp is the base-case merge algorithm which generates
the CP of the data elements in two buffers.

procedure merge(bufl,buf2)

begin
[buf1=0Vbuf1="END"Vbuf2=0Vbuf2="END" — skip
|otherwise— A:=bufi[1]; B:=buf2[1];

[—sync (A) A—sync(B) — cp(bufl,buf2) 1)
| sync (A)A (—sync(B)V (A<B)) — scanto(bufi,A,bufil,bufi2); (2)
put(4);

merge (buf1l,buf2);
merge (buf12,buf2)
|eync (B) A (—sync (A)V (B<A)) — scanto(buf2,B,buf21,buf22); (3)
put (B) ;
merge (bufl,bufi2);
merge (bufl,buf22)
|sync (A) Async (B)A(A=B) — scanto(bufi,A,bufll,buf12) (4)
scanto (buf2,B,buf21,buf22) ;
put (4);
merge (buf11l,buf12);
merge (buf12,buf22)
1
1

end of procedure merge.

procedure scanto(buf,S, bufl,buf?)
begin
i:=2;
*[buf [i]#SAbuf [i]4"END" — bufi[i]:=bufl[il; i:=i+1];
j:=1; N:=length(buf);
*[i<N — buf2[j]l:=buf[il; i:=i+1; j:=j+1]
end of procedure scanto.

Figure 6. General Algorithm for two buffers

If there are more than two input buffers and some of them have one or more SYNC signals, the
above algorithms can be generalized easily. With n input streams, in which each has an ordered
Sync sequence, the merge algorithm applies recursively to remove the smallest Sync signal of the
n outermost ones of the input streams one at a time. When the smallest Sync is common to

several input streams, all those Syncs will be removed at once. When none of the input streams

21

contains Sync signals, the Cartesian Product over n input streams is performed. For instance, if

merge(bufl,buf2,...,bufn) is called and a smallest Sync S is found in both bufi and bufj, the

following program is executed:

scanto(bufi,S,bufil,bufi2);
scanto(bufj,S,bufjl,bufj2);

put(S);

merge (bufl,...,bufil,...,bufji,...,bufn);
merge (bufi,...,bufi2,...,bufj2,...,bufn);

The merge algorithm in an OR process merges the partial solutions received from its AND
descendants to form all the legal solutions of this OR subtree. The partial solutions received from
one AND descendant could be variable bindings or true/false values. The true/false values are used
to select the merge result from other channels. If the value is true, the merge algorithm merges the
partial solutions as usual. If the value is false, the merge algorithm skips the merge operation and
returns false instead. In addition, the merge algorithm in an OR process eliminates all the Sync
signals in the merge result so that the solution stream sent up to the father AND process contains

no Sync signals.
4.3 Correctness Proof

In order to prove that the merge algorithm produces all the correct combinations of multiple
inputs of a process, we shall define the syntactic structure of an “input stream” and give a formal

treatment of how an AND process transforms one or more input streams into an output stream.

Definition: An input stream X (D) can be defined recursively:
1. Zy(D)=D

2. Zru(sy(D) = Bp(Z)(D)) = Zr((Si, Du)™), Vs € R 1> 5.

where R is an ordered set of integers. Fach element in R is a Sync that appears in the input stream.
Let’s call R the Sync sequence of this input stream. We slightly abuse notations and represent R by
the array R[], s.t., 1 < j = R[] < R[j]. £ is an operator defined recursively over the input data,
D, where D is the input stream with all the Syncs removed. Applying & {i} over D is to divide
D into n; groups and separate each group by a Sync S;. Each group of input data, Dy, is called
a data segment, which is uniquely identified by a vector, v. In (2), v is a vector of length (r+1)

where |R| = r and v[r + 1] = k for 1 < k < n;. Therefore, D, represents a data segment that is

22

produced by the k-th output of the Sync generator S;. Besides, (S;, Dy)™ is a regular expression
denoting the concatenation of the string (S;, Dy) n; times. Notice that the data segment Dy is
changed every time the syntactic structure of the input stream is transformed. The above notation
is used to represent the syntactic structure of an input stream. How D, is changed by different

transformations of the input stream will be explained later.

There are two ways of changing the structure of an input stream in our model. First, if an
AND process is a Sync generator, the structure of the output stream is derived by concatenating
an extra Sync signal to the Sync sequence of the input stream. Second, if an AND process has
several inputs, say n, the structure of the merge output can be derived by an n-way merge of the
n Sync sequences. Figure 7 shows the two possible transformations of an AND process given one
input and one output. In Figure 7.a, the structures of the input and the output streams are the
same because the AND process is not a Sync generator. In Figure 7.b, the AND process is a Sync
generator which generates Sync S; and the output stream has the structure & Ru{i}- Because of the
total ordering of the Sync generators, 7 is guaranteed to be larger than any element in R. Figure
8 shows the input-output transformation of the merge algorithm, given n input streams. The Sync
sequence of the output is derived by n-way merge of the n input Sync sequences. An AND process
with n inputs and one output can be represented by one merge operation (Figure 8) followed by one

of the two AND operations (Figure 7) depending on whether the AND process is a Sync generator

or not.

in

in
2D 2D

l
®©

0 0
2D ZRUU}D

(@ (b)

Figure 7. The transformation of an AND process with single input

2 AR, uR, DX D% XD

Figure 8. The transformation of the merge algorithm with two inputs

The data segments in the input stream are changed differently in the two transformations
described above. Since we are only interested in the merge result, we’ll only consider the second

case, i.e., the transformation due to the merging of two input streams.

Definition: An ordered union operator “Li” is defined as R = Rj LU Ry, where R, R; and Ry are

ordered sets (i.e., the elements in the set are sorted in ascending order) and R = Ry U Ry. In other

words, it is equivalent to a two-way merge.

Definition: An ordered join operator “ Ll ” is defined as vp = VR, U vg,, where B = R; LI Ry, vp,
vR, and vp, are vectors with length |R|, |R;| and |Ry| respectively. vg is the result of joining vR,

and vg, on the common elements of R; and R;. More precisely, vp = vg, U vp, iff

1. Vi,5: Ry1[i] = Ra[j] = vg,] = vR,[s] and

2onli = {20} R SR

Theorem 1. Given two input streams Xg, (D*) and XRg (DY), the result generated by the merge

algorithm is T p, D¢, where Rg = R4 U Rg. Moreover, D° is defined as the Cartesian Product of
D% and D® such that

D;. = Dy, x ng with v, = vy U vy (3)

Proof: Let the length of R4 and Rp be t; and t; respectively. This theorem can be proved by

induction on the ordered pair (ta,), where (ta,t5) < (t5,8}) iff to < t}, or to =t} and ¢, < t}.

24

It is easy to derive the proof from the program in Figure 6. The complete proof is given in

(6] u

From Theorem 1, we derive the merge result with two arbitrary input streams. The remaining
task is to show that the merge result is correct. Given a process with two inputs, a legal input
combination is an input pair such that the input elements of the pair are originated from the same
output of a common ancestor along the two input paths. An input path is a path containing the
current process, one of the two input links, and tracing back to any ancestor of the current process.
There are many such paths. If a process is shared by any two input paths, in which each contains
one different input link, then only the inputs which are derived by the same output of that process
can be combined. Notice that such a common ancestor is marked as a Sync generator. Therefore, by
observing the Sync sequences of the two input streams, we can determine all the common ancestors

which affect the merge result along the two input paths.

Theorem 2 shows that the merge result in Theorem 1 indeed contains all the legal input

combinations.

Theorem 2. The result of the merge algorithm contains all the legal input combinations.

Proof: Supposed that the two input streams in Theorem 1 have n common Sync signals, i.e.,
|R4 N Rp| = n, we need to prove that all the inputs that are derived from the same outputs
generated by the n Sync generators are combined. Let P; be the Sync generator that generates a
Sync signal S;. Then, each output generated by P; is separated by a pair of S;’s. By propagating
the output stream of P; throughout the data flow graph, the syntactic structure of the output
stream may or may not be changed. If the syntactic structure of the output stream is not changed,
any result derived by the k-th output of P; is appeared in the same data segment enclosed by the
corresponding pair of S;’s. When the syntactic structure of the output stream is changed by merge
operations or the generation of new Syncs, S; may be further nested into other Sync signals. In
this case, the results derived by the k-th output of P; are divided into several data segments and
spread into different locations. Generally speaking, with the input stream A in Theorem 1, the
inputs that are derived by the k-th output of process P; are the union of all the data segments
with the j-th element of its id vector being k, where j is the position that S; is placed in the Sync

25

sequence R 4.
a
U ‘D'Ua
Yvg:
valf|=kAR 4 |d]=i
where UVva:va[j]=k AR4[5)=1 is used as an abbreviation for a sequence of unions with the index v,

satisfing the condition specified in the subscript of {J.

Assume there are n common Syncs, Si1>Sigs -+ +»5i,, in the two input streams. We will show
that the merge result in the case the Sync generator Pi,- generating the t;-th output, for all j,
1 £ j £ n, is the Cartesian Product of the portions of the two input streams under the same
condition. Let k;, I; and m; be the locations where Sz‘,- appears in R;, Rg and Rg, i.e., Rylk;} =

Rp[lj] = Rc[m;] = i}, for 1 < j < n. Then the above relation can be formulated as follows:

U »o.= U bpix U D, (5)

Yue: Yva: Vuy:
(Vi:1L5<n: (V5:1<5<n: (V5:1<5<n:
velmg]=t;) valkjl=t;) vpltgl=t;)

Eq. (4) can be derived from Eq. (3) easily. First add a big union Uvo,:(vi1<i<niv, [m;]=t;) to both
sides of (3). Then divide the unions at the right hand side into two independent sets of unions and
then move the unions inside the CP and associate the first set of unions to D% and the second set

of unions to D?.

b
U o= U (D5, xD})
Vve: Yve:
(v5:1<5<n: (V5:1<5<n:
uc[mj]=tj) uc[mj]ztj)
= U (D, x D)
Y{va _ITI_ vp):
(V75:1<5<n:

valkjl=vslijl=t;)

U U (@5, x D)

Yug: Vug:
(Vi:1<5<n: (vj:1<5<n:
valkjl=t;) wpli;]=t;)

U Dga. X U ng .

Yvg: Vo
(vi:1<5<n: (V7:1<j<n:
"a[kj]=tj) "b[lj]=tj)

Therefore, we can conclude the merge algorithm gives all the legal input combinations. &

With the above theorems, we can show that the Sync Model is complete, i.e., the Sync Model

generates all the solutions for a given program.

From Kowalski [4], we know that each successful computation of an initial goal can be rep-

resented as a subtree of the AND/OR tree, i.e., the process tree in our Model. Such a subtree

26

starts from the root, expands by including exactly one descendant OR process for each of its AND
process and all the descendant AND processes for each of its OR process, and ends with leaf nodes

that successfully terminates.

Since any successful computation can be mapped onto a subtree in the Sync Model, if we can
prove that such subtree generates the same solution as this successful computation, then the Sync

Model is proved to be complete.

Theorem 3. The Sync Model is complete.

Proof: We first prove that a subtree that represents a successful computation generates the
same solution as this computation. Let’s first choose any OR process in a subtree that corre-
sponds to a successful computation. Assume this OR process contains a goal g and a clause
“gl :— p1,p2,...,pn.”. Let X1,Xs,...,X,, be the variables within this clause and the successful
computation gives a unique solution to these variables, i.e., t1,%s,...,t,. Moreover, let each D;
contains a set of input variables and a set of output variables. The input-variable set and the

output-variable set of any p; are disjoint and both of them are subsets of (X7, ... y Xm)-

Let’s assume that the subtree under each p; produces the correct solutions for the output
variables of p; if the input variables are bound to the correct values. Here, the correct solution of a
variable X; is meant to be t;. Therefore, any process p; that has no input variables will generate the
correct solutions to its output variables. Furthermore, any p; with nonempty input-variable set will
produce the correct solutions to its output variables if the producers of its input variables generate
the correct solutions. The above statement is obviously true if p; has only one input variable. It is
also true if p; has more than one input variable because the merge algorithm in p; always generates
the correct input combinations from Theorem 2. Therefore, the OR process generates the correct
solution for its goal g assuming the subtrees under each p; are correct. Furthermore, if in the
subtree corresponding to a successful computation, there is an OR process which contains a unit
clause. This OR process is always a leaf node and it generates the correct solutions to the output
variables of the goal in the process. Thus, by induction, the subtree corresponding to a successful

computation will generate the correct solution for that computation.

From the other direction, we shall also prove that any minimal subtree which produces an
answer corresponds to a successful computation. A minimal subtree is a subtree which contains no

failure nodes. The proof is similar to the proof above and thus omitted here.

27

Since any successful computation can be mapped onto a subtree in the Sync Model and each
subtree generates the correct solution for the corresponding computation, we conclude that the

Sync Model generates all the solutions for a given program and therefore it is complete. §
5 Conclusion

We have presented a model for the parallel execution of logic programming on a message-
passing multiprocessor system. AND parallelism is carried out by constructing an efficient data
flow graph dynamically The mechanism that is used to synchronize the multiple partial solution
flows in the data flow graph makes it possible to realize both AND parallelism and OR parallelism

without any form of backtracking.

Our model is complete. It handles both deterministic and non-deterministic programs, and it
is particularly good for non-deterministic programs with multiple solutions. It is able to handle a

pure logic program as well as an extended logic program with variable annotations and guarded

clauses.

In our model, the AND/OR tree is searched in both breadth-first and depth-first manner.
Consider two sibling AND processes that share a common variable. The subtree under the producer
of the variable will be searched first and then the search for the consumer and its subtree can be
started. If the producer produces multiple solutions to the variable, the execution of the two sibling
AND processes are pipelined. Although this approach seems to be less parallel than purely breadth-
first search of the AND/OR tree, our model is in fact more efficient because we avoid unnecessary
computations in the consumer process. In a purely breadth-first search, invalid bindings of the
shared variable are sent to the consumer and later found invalid by a process in the subtree of the

producer.

We believe that any form of backtracking — “naive” or “intelligent” — should be totally elimi-
nated from an OR-parallel model of logic programming. Backtracking simply means complicated
control and high overhead. The synchronization mechanism proposed in the Sync Model is clean
and simple. Although we need extra Synchronization signals, we don’t need to send the complete

set of bindings and thus, the overhead is actually lower.

Our Model can be modified to handle stream parallelism as well. Extended with tail recursion

optimization [6], our model becomes an efficient parallel model that exploits all kinds of parallelism

28

inherent in a logic program. The mapping from the Sync Model onto the Sneptree, which is chosen
as the target machine for our Model, is found to have minimal mapping cost in terms of load
balancing and communication overhead. Therefore, it is feasible to construct a message-passing

multiprocess system based on the Sneptree architecture to implement the Sync Model effectively.

Acknowledgements

The authors would like to thank Kevin Van Horn for his valuable comments and the members

of the “Thursday Meeting Group” for their carefully reading on an earlier draft.

[1]

2]

3]

[4]

[5]

7l

(8]

[9]

[10]

[11]

[12]

[13]

[14]

29

Reference

Chang, J.H., and D. DeGroot, AND-Parallelism of Logic Programs Based on Static Data Depen-

dency Analysis, Dept. of Electrical Engineering and Computer Science, Univ. of Calif, Berkeley.
Sep, 1984

Conery, John S., The AND/OR Process Model for Parallel Interpretation of Logic Programs,
Ph.D. Dissertation, TR204, University of California, Irvine, June 1983

DeGroot, Doug, Alternate Graph Ezpressions for Restricted AND-Parallelism. Compcom 85,
Spring, pp206-210, Feb. 1985.

Kowalski, R.A., Logic for Problem Solving, Elsevier Nother Holland Inc., 1979.

Li, P., and A.J. Martin, The Sneptree — A Versatile Interconnection Network, 5194:TR:85,
Computer Science, Caltech, 1985.

Li, P., A Parallel Ezecution Model for Logic Programming, Ph.D. Dissertation, Computer Sci-
ence, Caltech, 1986.

Lindstrom, G., OR-Parallelism on Applicative Architectures, Lab. for Computer Science, Mass.
Institute of Tech., Jan, 1984

Martin, A.J. and J. van de Snepscheut, Networks of Machines for Distributed Recursive Com-
putations, TR:84:5147, Caltech, Computer Science, 1984

Nakagawa, Hiroshi, AND Parallel PROLOG with Divided Assertion Set, 1984 International
Symposium on Logic Programming, pp22-28, Feb, 1984.

Pereira, L.M., and Porto, A., Selective Backtracking for Logic Programs, Departamento de In-
formatica, CIUNL no. 1/80 University Nova de Lisboa.

Ramakrishnan, R. and A. Silberschatz, Annotations for Distributed Programming in Logic, TR-
85-15, Department of Computer Science, University of Texas at Austin, 1985.

Saraswat, V.A., Problems with Concurrent Prolog, CMU-CS-86-100, Department of Computer
Science, Carnegie-Mellon University, 1985.

Shapiro, Ehud Y., A Subset of Concurrent Prolog and Its Interpreter, TR-003, ICOT-Institute
for New Generation Computer Technology, Jan, 1983, Japan.

Wise, Michael J., A Parallel PROLOG: the construction of a data driven model, Conference

Proceeding of the Symposium on LISP and Functional Programming, pp 56-66, ACM, August,
1982.

